On-demand cellular uptake of cysteine conjugated gadolinium based mesoporous silica nanoparticle with breast cancer-cells
Authors
Abstract:
Design, synthesis, and conjugation of mesoporous silica nanoparticles (MSNs) with biomolecules is a matter of growing interest to enhance selective uptake of contrast agents like gadolinium (Gd3+) by cancer cells. Here, by targeting xc-cystine/glutamate antiporter system in breast cancer cells, conjugation of MSN-Gd3+ with cysteine is used to enhance cancer cellular uptake of Gd3+. Reactions designed to make different covalent bonds between MSNs and cysteine to investigate impact of cysteine conjugation of MSNs-Gd3+ on uptake of Gd3+ by breast cancer cells. Cysteine amino acids were attached to the surface of MSNs via its three functional groups using three different conjugation methods. Therefore, the external surface of MSNs were first modified by three different linkers to create amine, epoxy, and isocyanate groups on the surface of MSNs, then pores loaded with Gd3+ complexes and reacted with toile, epoxy, and amine groups of cysteine, respectively (nanoprobe A, B and C). The nanoprobes were characterized using different techniques, including (scanning electron microscope) SEM, Brunauer–Emmett–Teller BET, dynamic light scattering (DLS) and Fourier Transform Infrared (FTIR). The intracellular uptake of nanoprobes by human dermal fibroblasts (HDF) and human breast adenocarcinoma cells (MCF-7) was investigated using inductively coupled plasma atomic emission spectrometer (ICP-AES). Results demonstrated that accumulation of Gd3+ in cancer cells is highly related to method of cysteine conjugation. The amount of Gd3+ was taken by cancer cells increased 7 folds, when thiol group of cysteine was responsible to make covalent bond with MSNs, in other words when the zwitterionic form of cysteine was on the surface (nanoprobe B). The average intracellular uptake of Gd3+ by cancer cells was 0.5±0.09 pg/cell. On the other hand, uptake of Gd3+ delivered by nanoprobe B into cancer cells was up to 4.7 times higher than normal cells. No appreciable cytotoxicity was seen using HDF and MCF-7 cell lines. This study provides MRI nanoprobes using suitable conjugation of Gd3+ based MSNs with cysteine for next studies about MR imaging of cancer.
similar resources
Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells.
Spatiotemporal control over the delivery of therapeutic agents is an outstanding challenge to cancer treatment. By taking advantage of recent advances in DNA aptamer biology and mesoporous silica nanotechnology, we report a general approach to design and fabricate controlled release drug delivery systems that are able to effectively target cancer cells. Specifically, polyvalent mesoporous silic...
full textSilica-Based Nanoparticle Uptake and Cellular Response by Primary Microglia
BACKGROUND Silica nanoparticles (SiNPs) are being formulated for cellular imaging and for nonviral gene delivery in the central nervous system (CNS), but it is unclear what potential effects SiNPs can elicit once they enter the CNS. As the resident macrophages of the CNS, microglia are the cells most likely to respond to SiNP entry into the brain. Upon activation, they are capable of undergoing...
full textThe effect of mesoporous silica nanoparticles loaded with epirubicin on drug-resistant cancer cells
Objective (s): In chemotherapy for cancer treatment, the cell resistance to multiple anticancer drugs is the major clinical problem. In the present study, mesoporous silica nanoparticles (MSNs) were used as a carrier for epirubicin (EPI) in order to improve the cytotoxic efficacy of this drug against the P-glycoprotein (P-gp) overexpressing cell line. Materials and Methods: MSNs with phosphonat...
full textEnhancement of radio sensitization by gold-silica shell- core nanoparticle in MCF7 breast cancer cells
Introduction: In the present study, we investigated the role of gold-silica shell-core nanoparticle in megavoltage irradiation of MCF7 breast cancer cells. Materials and Methods: gold-silicon oxide shell-core nanoparticles (NPs) were obtained by conjugation of gold nanoparticle with amine or thiol functionalized silica nanoparticles (AuN@SiO2 and AuS@SiO...
full textMesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells.
Biocompatible mesoporous silica nanoparticles, containing the fluorescence dye fluorescein isothiocyanate (FITC), provide a promising system to deliver hydrophobic anticancer drugs to cancer cells. In this study, we investigated the mechanism of uptake of fluorescent mesoporous silica nanoparticles (FMSN) by cancer cells. Incubation with FMSN at different temperatures showed that the uptake was...
full textMesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.
The study of ordered mesoporous silica materials has exploded since their discovery by Mobil researchers 20 years ago. The ability to make uniformly sized, porous, and dispersible nanoparticles using colloidal chemistry and evaporation-induced self-assembly has led to many applications of mesoporous silica nanoparticles (MSNPs) as "nanocarriers" for delivery of drugs and other cargos to cells. ...
full textMy Resources
Journal title
volume 16 issue 1
pages 1- 8
publication date 2018-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023